文章编号: 0253-2239(2009)12-3424-05

TEA CO₂ 激光器的 Fox-Smith 谐振腔研究

梁志强 曲彦臣 赵卫疆 王元虎 任德明 胡孝勇

(哈尔滨工业大学可调谐激光技术国家级重点实验室,黑龙江哈尔滨150001)

摘要采用带有标准具的 Fox-Smith 谐振腔产生了稳定可调谐的单纵模 TEA CO₂ 激光输出。对干涉腔反射率的 数值模型进行了研究,讨论了失谐角、子腔的匹配等因素对模式选择的影响,并且进行了实验验证。实现了 10.6 µm单纵模激光输出,能量 140 mJ,重复率达到 90%,腔内元件没有受到损伤。 关键词 激光器;TEA CO₂ 激光器;单纵模;可调谐 中图分类号 TN248.2⁺2 文献标识码 A doi: 10.3788/AOS20092912.3424

Research of TEA CO₂ Laser with Fox-Smith Cavity

Liang Zhiqiang Qu Yanchen Zhao Weijiang Wang Yuanhu Ren Deming Hu Xiaoyong (National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China)

Abstract We obtain a stable tunable single-longitudinal-mode (SLM) TEA CO_2 laser oscillation by using a Fox-Smith cavity with a Fabry-Pérot etalon inserted in the sub-cavity. A numerical model of the reflectivity of the interference cavity is studied. The influence of the detuned angle and the sub-cavity-matching on the mode-choosing is discussed, and the verification experiment is carried out. Finally we get 140 mJ of SLM output energy at 10.6 μ m with repetition frequency of single longitudinal mode as high as 90%, and there is no damage on the elements in the cavity.

Key words lasers; TEA CO_2 laser; single longitudinal mode; tunable

1 引 言

可调谐单纵模 TEA CO₂ 激光器广泛应用于光 抽运远红外激光器、高分辨率光谱学、相干探测 CO₂ 激光差分吸收雷达等领域^[1~3]。目前有多种方法能 够实现 TEA CO₂ 激光器单纵模输出,其中应用最 广的有使用混合谐振腔,注入锁定,以及腔内使用选 模元件等方法^[4~6]。混合谐振腔法是利用增益带宽 较窄的低气压连续 CO₂ 增益区控制脉冲激光器实 现单纵模激光输出,这种激光器易于产生单纵模激 光且运行稳定,但由于连续部分通光孔径较小,其输 出效率较低^[7]。注入锁定技术能够获得高效的单纵 模输出,这种方法要求种子光激光器和主振荡器相 匹配^[8,9]。而且频率稳定的可调谐种子源价格昂 贵,在一定程度上限制了这种技术的应用。使用棱 镜、标准具或多光束干涉仪等选模元件进行模式选 择,选模元件会增加腔内损耗使激光输出效率降低, 但其良好的频率调谐特性和相对低廉的价格使这种 技术得到了广泛的应用^[10~13]。其中,使用多程反射 干涉仪(如 Fox-Smith 干涉仪)进行模式选择,干涉 仪的反射率决定了振荡光的频率,这就增大了振荡 模式的模式竞争效应,从而可以获得单个纵模的运 行。但是高损伤阈值耦合元件的使用限制了其在高 功率 TEA CO₂ 激光器中的应用。

本文设计并研制一台可调谐单纵模 TEA CO₂ 激光器,采用带有标准具的 Fox-Smith 谐振腔实现 了单纵模激光输出。

- 2 理论研究
- 2.1 子腔反射率的计算

对于如图1所示的子腔,设入射光场为

收稿日期: 2009-02-17; 收到修改稿日期: 2009-03-17

作者简介:梁志强(1984—),男,硕士研究生,主要从事激光技术和激光雷达等方面的研究。E-mail: zhiqiangliang@live.cn **导师简介**:任德明(1969—),男,教授,博士生导师,主要从事激光技术和激光雷达等方面的研究。

E-mail: co2@hit.edu.cn(通信联系人)

$$E_{i} = A_{i} \exp[-i(\delta_{0} - wt)],$$

在子腔内经过 n 次往返后,出射光场为
$$E_{n} = t_{e}t_{0}^{2}r_{1}A_{i}(r_{0}^{2}t_{e}^{2}r_{1}r_{2})^{n}\exp[-i(\delta_{0} - wt + \delta_{n})],$$
(1)

• / 0

式中 A_i 和 $\delta_0 - \omega t$ 分别为入射光场振幅和初相位, 标准具的透射系数为 t_e ,分束片的透射系数为 t_0 ,反 射系数为 r_0 ,反射镜 M_1 , M_2 的反射系数分别为 r_1 , r_2 ,相邻光场间的相位差为 δ_n ,则将各出射光场叠加 得到的总光场为

$$E = \frac{t_{\rm e} t_{\rm o}^2 r_1 A_{\rm i} \exp\left[-\operatorname{i}(\delta_0 - \omega t)\right]}{1 - t_{\rm e}^2 r_{\rm o}^2 r_1 r_2 \exp\left[-\operatorname{i}\delta_n/n\right]}, \qquad (2)$$

Fig. 1 Schematic diagram of sub-cavity 出射光强表达式为

$$I = E \cdot E^* = \frac{(t_e t_0^2 r_1 A_i)^2}{1 + t_e^4 r_0^4 r_1^2 r_2^2 - 2t_e^2 r_0^2 r_1 r_2 \cos(\delta_n/n)},$$
(3)

考虑到 $t_e^2 = T_e, r_0^2 = R_0, r_1^2 = R_1, r_2^2 = R_2, t_0^2 = T_0,$ 整理(3)式得到子腔反射率为

$$R(\nu) = \frac{E \cdot E^{*}}{E_{i} \cdot E^{*}_{i}} = R_{1} T_{e} \left(\frac{T_{0}}{1 - R_{0} T_{e} \sqrt{R_{1} R_{2}}} \right)^{2} \cdot \frac{1}{1 + F \sin^{2} \left(\delta_{n} / 2n \right)}, \qquad (4)$$

式中

$$F = \frac{4T_{\rm e}R_0 \ \sqrt{R_1R_2}}{(1 - T_{\rm e}R_0 \ \sqrt{R_1R_2})^2}$$

相位差

$$\delta_n = \frac{4n\pi\nu(l_1+l_2)}{c}.$$

T。为标准具的透射率,表示为

$$T_{\rm e} = \frac{T^2}{T^2 + 4R\sin^2(\delta/2)}.$$
 (5)

标准具内光场间相位差为 $\delta = 4\pi nh\nu/c$ 。其中 T,R分别为标准具膜的透过率和反射率,n为标准 具折射率,h为厚度。光栅的反射率 $R_1(\nu)$ 可由高斯 公式近似求得^[14]

$$R_1(v) = R_{\max} \cdot 16^{-\left[(v-v_0)/\Delta v_g\right]^2}, \qquad (6)$$

式中 R_{max} 为在频率 $\nu = \nu_0$ 时最大反射率, $\Delta \nu_g$ 为光栅的半峰全宽

$$\Delta \nu_{\rm g} \approx \frac{-c \,\delta \,\phi}{\lambda} \Big(\frac{\mathrm{d}\theta}{\mathrm{d}\lambda} \Big),\tag{7}$$

式中 $\delta\phi$ 为光束发散度角, $d\theta/d\lambda$ 为光栅的角色散。

考虑到在脉冲激光器中光束在子腔内的往返次 数是有限的,(4)式应改写为

$$R(\nu) = T_{e} T_{0}^{2} R_{1} \Big[\sum_{n=0}^{p} \left(T_{e} R_{0} \sqrt{R_{1} R_{2}} \right)^{n} \cdot \exp(-i\delta_{n}) \Big] \cdot \Big[\sum_{n=0}^{p} \left(T_{e} R_{0} \sqrt{R_{1} R_{2}} \right)^{n} \cdot \exp(i\delta_{n}) \Big], \qquad (8)$$

式中 $p = \frac{c\tau}{2(l_1+l_2)}, \tau$ 为脉冲持续时间。

计算得到子腔反射率随入射光相对频率的变化 如图 2 所示,图 2(a)中实线为子腔反射率随入射光 相对 ν₀ 频率的变化曲线,虚线为子腔出射光强随入 射光相对频率的变化曲线。比较子腔反射率和出射 光强可见子腔对入射光选模作用显著。图 2(b)中 实线为子腔反射率随入射光相对 ν₀ 频率的变化曲 线,虚线为由 TEA CO2 激光器自由光谱区决定的 子腔反射率。比较实线和虚线显见子腔对其它模式 滤除作用。计算中所使用的参数如表 1 所示。

图 2 子腔反射率随入射光相对频率 vo 的变化曲线

Fig. 2 Curves of sub-cavity reflectivity with the relative frequency of incident light

报

光

表 1	子腔计算所用参数	
-----	----------	--

Table 1 Parameters for sub-cavity calculation

Transmissivity of BS, T_0	0.4
Reflectivity of BS, R_0	0.6
Reflectivity of M_2 , R_2	0.99
Reflectivity of etalon face, R	0.6
Refractive index of etalon, n	2.4
Thickness of etalon, h / mm	15
Reflectivity of grating at $ u_0$, $R_{ m max}$	0.95
Refrerence wavelength, $\lambda_0/\mu m$	
Total length of sub-catity, $l_1 + l_2/\mathrm{cm}$	~ 30
Laser pulse duration, $ au$ /ns	100

2.2 失谐角的影响

当将失谐角 $\Delta \theta$ 考虑在内时,相位延迟 δ_n 修 正为^[15]

$$\delta_n = \frac{4\pi n\nu (l_1 + l_2)}{c} \Big(1 - \frac{2n^2 + 1}{3} \Delta \theta^2 \Big). \tag{9}$$

假设对于一个纵模, M1 与输出耦合镜 M3 已对

准且不存在失谐,则其相邻模式存在一个轻微的倾斜,这将使得其共振反射率比已对准模式的反射率 低。一级衍射自准直光栅的光栅方程为

$$\lambda = 2d\sin\theta,\tag{10}$$

式中 *d* 为凹槽宽度, *θ* 为光栅入射角。得到与已对准 模式临近的模式的倾斜角为

$$\Delta\theta = \frac{c^2}{4d(l_1 + l_2)\nu^2 \cos\theta},\tag{11}$$

将(11)式代入(9)式,得到相应的相位延迟变为 $\delta_n = \frac{4\pi n_\nu (l_1 + l_2)}{c} \bullet$

$$\left[1 - \frac{1}{(l_1 + l_2)^2} \frac{2n^2 + 1}{3} \left(\frac{c^2}{4d\nu^2 \cos \theta}\right)^2\right], (12)$$

将(12)式代入(8)式,得到子腔反射率与不考虑相位 延迟时反射率随入射光相对频率的变化如图3所示。

对比模拟结果可知,相位延迟对子腔反射率基 本没有影响。

图 3 考虑相位延迟(a)与不考虑相位延迟(b)的子腔反射率随入射光相对 vo 频率变化曲线

Fig. 3 Curve of the sub-cavity reflectivity with the relative frequency of incident light with phase delay (a)

and without phase delay (b)

2.3 子腔的匹配

对于给定的一般稳定球面腔 (R_1, R_2, L) ,可计 算出其等价共焦腔的焦距和两个反射镜相对于束腰 的位置。为使 M_1 与 M_2 构成的子腔和 M_1 与 M_3 构成的主腔相匹配,其等价共焦腔焦距应相等,并且 M_1 到两个束腰的距离应相等。设 R_1, R_3 分别为 M_1, M_3 的曲率半径,子腔腔长 $l = l_1 + l_2$,主腔腔长 为 L,则有

$$f_1 = \sqrt{l(R_1 - l)}, \qquad (13)$$

$$f_2 = \sqrt{L(R_3 - L)}, \qquad (14)$$

由 $f_1 = f_2$,得到

$$R_1 = \frac{L}{l} R_3 - \frac{L^2 - l^2}{l}.$$
 (15)

由(15)式可见,相对于L,l值固定的腔型, R_1 随 R_3 呈线性变化。实验中主腔长约1m,子腔长约 0.3 m,且由于 R₃ 很大约 20 m,后一项较小,可近似 略去,使 R₁ 大小主要取决于 R₃。

3 实验研究

实验装置如图 4 所示, TEA CO₂ 激光器重复频 率 5 Hz, 工作气体是体积分数为 1:1:3的 CO₂, N₂ 和 He 的混合气体, 气压为 0.96×10⁵ Pa。当工作 电压为 24 kV 时, 激光器自由振荡产生 10.6 μm 激 光基横模能量为 350 mJ。实验中所使用的各光学 元件的参数与表 1 中各参数值相同。使用 818E-20-50L 能量计进行激光能量检测, 用 HgCdTe 探测器 及与之相匹配的前置放大器测量脉冲波形, 由平面 光栅单色仪测量波长, 用 TDS3032B 数字存储示波 器显示激光脉冲波形。

图 4 实验装置图

在单脉冲运转的情况下,实现了单纵模的调谐 输出。在放电电压 24 kV,重复频率为 5 Hz 的条件 下,得到 10.6 μm 单纵模激光输出能量 142 mJ。激 光脉冲波形及其傅里叶变换如图 5 所示。可以看 出,激光脉冲波形比较光滑,其傅里叶变换只含有基 波成分,因此是单纵模振荡。

实验中发现,当激光器工作在阈值附近时(工作 电压约为17kV),既使不使用标准具也能够实现单 纵模激光输出,但此时激光能量很低。随着工作电 压的不断升高,偶尔出现多纵模激光输出。其脉冲 波形表现为两个或多个纵模的拍频输出。图6为与 基频光频差高于一个纵模间隔的模式与基频光拍频 输出的情况(HF);图7为基频光与其相邻模式拍频

Fig. 6 Waveform of high-frequency beat pulse (solid curve) and its Fourier transformation(dashed curve)

输出的情况(LF)。加入标准具后一般会将另一个模式滤掉,形成单纵模振荡。

图 7 低频拍脉冲波形(实线)及其傅里叶变换(虚线) Fig. 7 Waveform of low-frequency beat pulse (solid curve) and its Fourier transformation 分别取不同的子腔长度,对单纵模激光输出的 重复率进行研究,实验结果如表 2 所示。每组实验

值为 500 个脉冲的统计结果。

表 2 单纵模激光输出重复率实验结果

Table 2 Experimental results of occurrences of single longitudinal-mode laser output

l_1/cm	7	14	15	23	30	40	⁰∕₀
l ₂ /cm	17 2	22		6 6	8 7	0	IF
7	1	2 2	_	6.2	19.2	27 5	HF
	81 8	75 8	_	87 2	72 1	72 5	SLM
12	12	15	_	_	0	10.8	LF
	4.4	6.6	_	_	25	23	HF
	83.4	78.4	_	89	75	66.2	SLM
15	_	_	6.1	_	_	_	LF
	_	_	3.3	_	_	_	HF
	_	_	90.6	_	_	_	SLM
22	10.3	14	_	3.2	23.5	1.7	LF
	8.8	12	_	19.4	20	15.3	HF
	80.9	74	—	77.4	56.5	83	SLM
32	20.7	47	—	0	5.4	14.7	LF
	2.1	0	_	18.2	5	0	HF
	77.2	53%	_	81.8	89.6	85.3	SLM
42	13.5	16.7	—	0	15.6	100	LF
	2.7	3.3	_	19.1	13	0	HF
	83.8	80	_	80.9	71.4	0	SLM

报

观察实验现象并对比表中实验数据发现,不同 的子腔长度会对输出激光模式的稳定性和输出激光 能量的稳定性产生影响,而对输出激光能量大小影 响较小。电压越低,单纵模重复率越大。当输出激 光不是单纵模时,基本为两个纵模振荡,根据子腔长 度不同出现高频拍和抵频拍,腔型对模式选择作用 显著。

当 l_1 , l_2 的值均适当小, $\mathbb{1}(l_1 - l_2)$ 的值较小时 单纵模重复率较高且能量比较稳定,考虑到对谐振 腔内器件的可调节性,选择 $l_1 = l_2 = 15$ cm 的腔型 进行后续实验。

通过调节光栅对单纵模 TEA CO₂ 激光器进行 调谐输出实验,激光器共调谐输出 43 条谱线,如 图 8所示。

图 8 调谐输出谱线图 Fig. 8 Schematic of tunable output

4 结 论

本实验使用带有标准具的 Fox-Smith 谐振腔实 现了单纵模 TEA CO₂ 激光的调谐输出。相对传统 的复合腔^[16],在这种腔型中,分束片的透射率较低, 子腔中的能量较小,标准具等腔中的光学元件不易 受到损伤,这点也优于其它复合腔型。进行了多组 改变子腔长度的实验,总结了子腔长度与输出特性 的关系。实验得到 10.6 μ m 单纵模激光输出能量 140 mJ,在单纵模输出状态下,激光器调谐输出 43 条谱线。

参考文献

1 D. J. Binks, L. A. W. Gloster, T. A. King *et al.*. Frequency locking of a pulsed single-longitudinal-mode laser in a coupledcavity resonator[J]. *Appl. Opt.*, 1997, **36**(36): 9371~9377

- 2 C. T. Gross, J. Kiess, F. Keilmann. Pulsed high-power farinfrared gas lasers: performance and spectral survey[J]. *IEEE* J. Quantu. Electron., 1987, QE-23(4): 377~384
- 3 O. A. Romanovskii. Applicability of airborne lidars based on middle IR gas lasers for gas analysis of the atmosphere [C]. *SPIE*, 2007, **6594**: 65940C-1
- 4 G. Kovar, D. Larouche, M. Piche *et al.*. Single-longitudinalmode operation of a TEA CO₂ laser with a modified Fabry-Perot interferometer[J]. *Appl. Opt.*, 1985, **24**(21): 3584~3590
- 5 K. Silakhori, A. Behjat, F. Soltanmoradi *et al.*. A compact injection locked single longitudinal mode TEA CO₂ laser [C]. SPIE, 2005, 5777; 433~437
- 6 A. K. Kar, D. M. Tratt, J. H. Mathew *et al.*. Status and prospects of hybrid and injection-locked TEA CO₂ lasers for lidar and nonlinear optics applications[J]. *IEEE J. Quant. Electron.*, 1985, **QE-21**(4): 359~364
- 7 A. Kumar, J. P. Nilaya, D. J. Biswas. Improved efficiency of a hybrid CO₂ laser as a result of increased TEM₀₀ mode filling factor [J]. *Rev. Sci. Instrum.*, 2004, **75**(12): 5203~5204
- 8 N. P. Barnes, J. C. Barnes. Injection seeding. I. Theory[J]. IEEE J. Quant. Electron., 1993, 29(10): 2670~2683
- 9 S. Y. Tochitsky, R. Narang, C. Filip*et al.*. Generation of 160ps terawatt-power CO₂ laser pulses [J]. *Opt. Lett.*, 1999, 24: 1717~1719
- 10 E. Palange, G. Salvetti. Control of intrapulse frequency chirping in long-pulse CO₂ lasers employing perturbation-insensitive optical cavities[J]. Appl. Opt., 1991, **30**(27): 3832~3841
- 11 J. M. Boon-Engering, L. A. W. Gloster, W. E. van derVeer *et al.*. Highly efficient single-longitudinal-mode β-BaB₂O₄ optical parametric oscillator with a new cavity design[J]. *Opt. Lett.*, 1995, **20**: 2087~2089
- 12 G. Salvetti, E. Palange, G. Salvetti. Multipass-prism interferometer for fine-frequency-tuning, single-mode operation of TEA CO₂ lasers[J]. Opt. Lett., 1984, 9: 393~395
- 13 Y. H. Wang, Y. C. Qu, W. J. Zhao *et al.*. Single longitudinal mode pulse from a TEA CO₂ laser by using a three-mirror resonator with a Fabry-Pérot etalon[J]. *Appl. Phys. B.*, 2008, 92: 237~241
- 14 J. R. Izatt, M. A. Rob, Wen-sen Zhu. Two and three-grating resonators for high-power pulsed CO₂ lasers [J]. Appl. Opt., 1991, **30**: 4319~4329
- 15 J. M. Vaughan. The Fabry-Pérot Interferometer: History, Theory, Practice, and Applications [M]. Taylor & Francis (1989)
- 16 Lü Yanfei, Tan Huiming, Miao Tongqun et al.. All-solid-state CW doubly resonant all-intracavity sum-frequency mixing 593 nm laser[J]. Chinese J. Lasers, 2005, 32(6): 730~732 日彦飞, 檀慧明, 缪同群等. 全固态 593 nm 复合腔连续波和频 激光器[J]. 中国激光, 2005, 32(6): 730~732